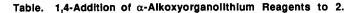
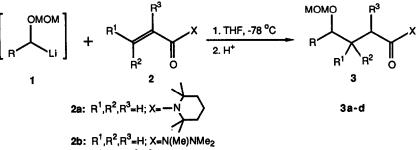

AN EXPEDITIOUS ENANTIOSELECTIVE SYNTHESIS OF 7-LACTONES

J. Michael Chong* and Eduardo K. Mar

Guelph-Waterloo Centre for Graduate Work in Chemistry Chemistry Department, University of Waterloo Waterloo, Ontario, Canada N2L 3G1

Summary: α -Alkoxyorganolithium reagents react with α , β -unsaturated trimethylhydrazides to give γ -alkoxytrimethylhydrazides in moderate to good yields. Acid hydrolysis of the latter compounds yields γ -lactones. A short enantioselective route to (S)-hexanolide is described.

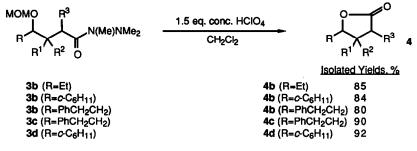

The lactone functionality is prevalent among many natural products.¹ For example, certain γ -lactones are pheromones for several insect species. In addition, the food industry utilizes some lactones as flavouring components. We envisioned an expeditious synthesis of γ -lactones² by the 1,4-addition of α -alkoxyorganolithium reagents³ to α,β -unsaturated carboxylic acid derivatives followed by cyclization of the resulting γ -alkoxyacid derivatives. α -Alkoxyorganolithium reagents can be obtained by transmetalation of α -alkoxyorgano-stannanes.^{3a} Moreover, α -alkoxyorganostannanes can be prepared in enantiomerically enriched form.⁴ Thus, an enantioselective route to γ -lactones is feasible as well.



Initial investigations centred on the addition of racemic α -alkoxyorganolithium compounds⁵ to α,β -unsaturated amides. Good yields of 1,4-addition product were obtained with the highly hindered acrylic acid tetramethylpiperidide $(2a)^6$ as the Michael acceptor (Table).⁷ Unfortunately, attempts to cyclize γ -alkoxyamide 3a (R=*n*-Bu) to the γ -lactone under acidic conditions (e.g. 3 N HCl, *p*-TsOH, HClO₄) were uniformly unsuccessful with no lactone observed.

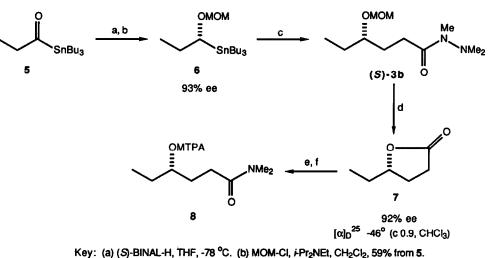
It is known that alkyllithiums add to α,β -unsaturated trimethylhydrazides in a conjugate fashion.⁸ Thus, we examined the reaction of α -alkoxyorganolithiums with various α,β -unsaturated trimethylhydrazides⁹ (Table).

Modest yields of 1,4-addition products were obtained with acrylic acid trimethylhydrazide (2b) with the principal side reaction being the oligomerization of the intermediate hydrazide lithium enolate with a molecule of 2b. Yields of 1,4-addition product obtained with crotonic acid trimethylhydrazide (2c) were poor to moderate as competing 1,2-addition was occurring.¹⁰ However, much better yields of 1,4-addition product were obtained with methacrylic acid trimethylhydrazide (2d); presumably, oligomerization of the intermediate lithium enolate is reduced due to the relatively hindered α -carbon. Not surprisingly, only modest diastereoselection was observed in additions of α -alkoxyorganolithiums to 2c and 2d.


2**b:** R¹,H⁻,H⁻=H; X=N(Me)NMe₂ 2**c:** R¹=Me; R²,R³=H; X=N(Me)NMe₂

2d: R¹,R²=H; R³=Me; X=N(Me)NMe₂

	Isolated Yields, % ^a			
R	3a	3b	3c ^{b,C}	3d ^b
Et	75	50	49 (51:49)	70 (67:33)
<i>i</i> -Pr	65	49	37 (54:46)	65 (71:29)
<i>n</i> -Bu	68	40	53 (71:29)	71 (61:39)
<i>c</i> -C6H11	65	42	37 (72:28)	73 (66:34) ^d
PhCH ₂ CH ₂	69	52	61 (60:40) ^d	70 (61:39)


^a All new compounds exhibited satisfactory spectroscopic and analytical data. ^b Numbers in parentheses refer to the diastereomeric ratio determined by GC analyses. ^c 16-40% yield of 1,2-addition product observed. ^d The major diastereomer was assigned as *syn* on the basis of its conversion to the γ -lactone. The chemical shift of H₅ of the γ -lactone was diagnostic.² For 4c (R=PhCH₂CH₂), *cis* δ_{H_5} = 4.41 ppm, *trans* δ_{H_5} = 3.99 ppm. For 4d (R=*c*-C₆H₁), *cis* δ_{H_5} = 4.23 ppm, *trans* δ_{H_5} = 4.05 ppm.

In contrast to the tetramethylpiperidides 3a, cyclizations of the resulting γ -alkoxyhydrazides 3b-3d to the γ -lactones 4 proceeded smoothly and in good yields. Exposure of the hydrazide to HClO₄ (1.5 eq) in CH₂Cl₂ (rt, 8 h) afforded the expected γ -lactone as the exclusive product. Some results are tabulated below. Hence, although yields of 1,4-addition product are only moderate, the overall synthesis of substituted γ -lactones is expedient (two steps) and simple.

Attention was then turned to the enantioselective synthesis of a γ -lactone (Scheme). Retention of configuration in the 1,4-addition of an α -alkoxyorganolithium reagent to an α,β -unsaturated acid derivative has not been previously demonstrated. Starting with the enantiomerically enriched α -alkoxyorganostannane 6,¹¹ (S)-hexanolide¹² (7) was prepared in two steps. The enantiomeric purity of 7 was determined by its optical rotation¹³ and by ¹³C NMR analysis of Mosher ester 8,¹⁴ obtained by derivatization of 7. Since the enantiomeric purities of 6 and 7 are the same, then the conjugate addition of the α -alkoxyorganolithium reagent to the unsaturated trimethylhydrazide occurred with retention of configuration.

Scheme.

Enantioselective Synthesis of (S)-Hexanolide (7).

(c) n-BuLi, THF, -78 °C, 10 min then 2, 1 h, 50%.

(d) 1.5 eq conc. HClO₄, CH₂Cl₂, rt, overnight, 85%.

(e) Me₂NH, Et₃N, -20 ^oC --> RT. (f) (R)-MTPA-CI, Et₃N, DMAP, CH₂Cl₂.

Thus, we have described an efficacious route to substituted y-lactones and to enantiomerically enriched γ -alkyl- γ -lactones. The latter compounds may be prepared in four steps (ca. 25% overall yield) from acylstannanes. Of the previously described enantioselective routes to γ -alkyl- γ -lactones,¹⁵ that of Silverstein's is perhaps the most general and economical (four steps from D- or L-glutamic acid, ca. 9-19% overall yields).¹ However, it is incapable of accessing <u>branched</u> γ -alkyl- γ -lactones (e.g. 3b, R=i-Pr or c-C₆H₁₁) since the key step involves displacement of a primary tosylate (*i.e.* 4, R=CH₂OTs; R^1 , R^2 , R^3 =H) with an organocuprate reagent. The present method allows one to prepare straight-chain and branched γ -alkyl- γ -lactones enantioselectively.

We thank the Natural Sciences and Engineering Research Council of Acknowledgement: Canada (NSERC) for financial support and a postgraduate scholarship (to E.K.M.).

References and Notes

- 1. Ravid, U.; Silverstein, R. M.; Smith, L. R. Tetrahedron 1978, 34, 1449.
- 2. For recent work on the synthesis of γ -lactones, see Reißig, H.-U.; Kunz, T.; Janowitz, A. Chem. Ber. 1989, 122, 2165 and references cited therein.
- 3. (a) Still, W. C.; Sreekumar, C. J. Am. Chem. Soc. 1980, 102, 1201. (b) Sawyer, J. S.; Kucerovy, A.; Macdonald, T. L.; McGarvey, G. J. J. Am. Chem. Soc. 1988, 110, 842. Recent work on the 1,4-addition of α -alkoxyorganocuprates (derived from α -alkoxyorganostannanes) to enones and enals have been reported: (c) Linderman, R. J.; McKenzie, J. R. J. Organomet. Chem. 1989, 361, 31. (d) Linderman, R. J.; Godfrey, A.; Horne, K. Tetrahedron, 1989, 45, 495. (e) Hutchinson, D. K.; Fuchs, P. L. J. Am. Chem. Soc. 1987, 109, 4930.
- 4. Chan, P. C.-M.; Chong, J. M. J. Org. Chem. 1988, 53, 5584.
- Prepared by transmetalation of racemic α-alkoxytributylstannanes with n-BuLi (THF, -78 °C).
 (a) Seebach, D.; Locher, R. Angew. Chem. Int. Ed. Engl. 1979, 18, 957. (b) Snieckus, V.;
- Mpango, G. B.; Mahalanabis, K. K.; Mahdavi-Damghani, Z. Tetrahedron Lett. 1980, 21, 4823.
- 7. Additions to N,N-diethylacrylamide gave predominantly polymerization products and only low (10%) yields of the desired γ -alkoxyamide. N,N-Diethylcrotonamide is, however, a good Michael acceptor for alkyllithiums and Grignard reagents.^{6b}
- Knapp, S.; Calienni, J. Synth. Commun. 1980, 10, 837.
 Prepared by addition of an equimolar mixture of trimethylhydrazine (Beltrami, R. T.; Bissell, E. R. J. Am. Chem. Soc. 1956, 78, 2467) and triethylamine to the unsaturated acid chloride in ether at -78 °C. Yields of 2b, 2c, and 2d were 45, 35, and 82%, respectively.
- 10. In fact, with hydrazide 2e [R^1 =TMS; R^2 , R^3 =H; X=N(Me)NMe₂], only the product of 1,2-addition was observed with 1 (R=i-Pr) (49% yield). With *n*-BuLi, 2e affords only the 1,4-addition product (66% yield). Perhaps stabilization of the tetrahedral intermediate arising from 1,2addition by the alkoxy group [cf: additions to N-methoxyamides (Weinreb, S. M.; Nahm, S. Tetrahedron Lett. 1981, 22, 3815)] causes 1,2-addition to be more favourable when α -alkoxyorganolithiums 1 are used.
- 11. Detailed experimental procedures for the preparation of compounds 5 and 6 are available: Chong, J. M.; Mar, E. K. Tetrahedron, 1989, 45, 7709.
- 12. The antipode of 7, (R)-hexanolide, is an attractant pheromone of several species of dermestid beetles of the genus Trogoderma.¹
- 13. (a) Yadav, J. S.; Rao, E. S.; Rao, V. S. Synth. Commun. 1989, 19, 705: $[\alpha]^{25}D$ +50° (c 2, CHCl₃); (b) Ref. 1: $[\alpha]^{20}D + 53.2^{\circ}$ (c 1, MeOH).
- 14. Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543.
- 15. For previous enantioselective syntheses of γ -alkyl- γ -lactones, see ref. 2 in: Zwanenburg, B.; Thijs, L.; Waanders, P. P.; Stokkingreef, E. H. M. Recl. Trav. Chim. Pays-Bas 1986, 105, 332.

(Received in USA 2 January 1990)

1984